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a b s t r a c t 
One key assumption of Markowitz’s model is that all traders act as price takers. In this paper, we extend 
this mean-variance approach in a setting where large investors can move prices. Instead of having an in- 
dividual optimization problem, we find the investors’ Nash equilibrium and redefine the efficient frontier 
in this new framework. 

We also develop a simplified application of the general model, with two assets and two investors 
to shed light on the potential strategic behavior of large and atomic investors. Our findings validate the 
claim that large investors enhance their portfolio performance in relation to perfect market conditions. 
Besides, we show under which conditions atomic investors can benefit in relation to the standard setting, 
even if they have not total influence on their eventual performance. The ‘two investors-two assets’ setting 
allows us to quantify performance and do sensitivity analysis regarding investors’ market power, risk 
tolerance and price elasticity of demand. 

Finally, for a group of well known ETFs, we empirically show how price variations change depending 
on the volume traded. We also explain how to set up and use our model with real market data. 

© 2016 Elsevier B.V. All rights reserved. 
1. Introduction 

The main economic assumptions in financial markets are per- 
fect competition and symmetric information. Even though, finan- 
cial markets generally approach perfect competition, in some cases 
these two assumptions do not hold, especially for powerful in- 
vestors. Indeed, the investment decisions of institutional investors, 
who usually run a key part of total assets in the market and cover 
an even greater portion of the trading volume, can have an impor- 
tant impact on market prices, see Campbell, Grossman, and Wang 
(1993) , Chan and Lakonishok (1995) , Llorente, Michaely, Saar, and 
Wang (2002) and Huang and Heian (2010) . Moreover, their private 
information about the market and their individual trading plans 
can equally affect the level of competition, see Wang (1994) , Foster 
and Viswanathan (1996) , Wang (1998) , Dasgupta, Prat, and Verardo 
(2011) . 
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Clearly, if done via single sell-order a trade of 10,0 0 0 shares 
impacts differently than a 100-share trade. Undoubtedly, the price 
will be negatively affected and some relevant information could 
be disclosed. Lo and Wang (2009) point out the theoretical conse- 
quences of this important empirical regularity: “That the demand 
curves of even the most liquid financial securities are downward- 
sloping for institutional investors, and that the price-discovery 
process often reveals information, implies that quantities are as 
fundamental as prices, and equally worthy of investigation”. Lo 
and Wang (2006) built an inter-temporal capital asset pricing 
model around this empirical fact about investors with some mar- 
ket power. 

Thus, the potential existence of market power in financial mar- 
kets raises important questions about the strategic behavior of big 
players, and their role in the definition of portfolio allocation. 

The literature contains different hypotheses regarding the 
assumption that prices depend upon trading strategies, giving rise 
to distinct methodological approaches. For example, in practice, 
investors may face different trading constraints, such as liquidity, 
that eventually could explain such deviations from the equilibrium 
price. Note that transaction costs can influence liquidity and hence 
market power, since transaction costs influence trading strategies 
and the bid/ask spread on the asset price, see Davis and Norman 
(1990) and Jouini and Kallal (1995) . Regarding methodologies, 
Cuoco and Cvitani ́c (1998) for example considers a price model 
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with coefficients depending on large-invest or strategy. In the 
same line, Ronnie Sircar and Papanicolaou (1998) , Bank and Baum 
(2004) and Cetin, Jarrow, and Protter (2004) develop models 
where prices depend on strategies using reaction functions. 

Nonetheless, examples of strategic models based on game the- 
ory in finance are very rare. Kannai and Rosenmüller (2010) de- 
veloped a financial non-cooperative game in strategic form, where 
a finite number of players may borrow or deposit money at a 
central bank and use the cash available to purchase a commod- 
ity for immediate consumption. The bank can print money to bal- 
ance its books and fix interest rates. For this game a pure-strategy 
Nash equilibrium is found under various assumptions. An exten- 
sion of this model with multiple periods is presented by Mangoubi 
(2012) . 

Regarding portfolio theory, one key assumption of Markowitz’s 
model is that all traders act as price takers, and hence no sin- 
gle one can exercise market power. According to Kolm, Tütüncü, 
and Fabozzi (2014) , the main extensions of the model have been 
the inclusion of: (i) transaction costs, e.g. Brown and Smith (2011) , 
(ii) different types of specific and institutional constraints, (see 
Clarke, De Silva, & Thorley, 2002 ), (iii) modeling and quantification 
of the impact of estimation errors in risk and return forecasts (via 
Bayesian techniques, stochastic optimization and robust optimiza- 
tion), (see Ledoit and Wolf, 2004 and Black and Litterman, 1992 ), 
and (iv) multi-period modeling, e.g. Merton (1969) and Campbell 
and Viceira (2002) . Thus, despite Markowitz’s portfolio selection 
model for a single period ( Markowitz, 1952 ) having been one of 
the cornerstones of modern finance – inspiring numerous exten- 
sions and applications as those enumerated above – the price taker 
assumption has not yet been relaxed. 

In sum, the financial literature has not directly addressed the is- 
sue of strategic behavior of large players in the context of portfolio 
management. Consequently, possible strategies for atomic players 
have remained neglected as well. 

In this paper, we analyze the strategic behavior of large and 
atomic investors, using a portfolio optimization model in pres- 
ence of an oligopolistic financial market. Thus, the ability of large 
investors to move prices in the traditional single period mean- 
variance portfolio model is introduced, relaxing one of the key as- 
sumptions of Markowitz’s model. Under this framework, the Nash 
equilibrium of both investor types emerges and is compared with 
standard portfolio results. 

This paper is organized as follows. Section 2 describes the gen- 
eral portfolio model considering oligopolistic financial markets. We 
derived its equilibrium and show how to construct an efficient 
frontier under this new framework. Section 3 constructs an exam- 
ple of the equilibrium for two risky assets and two types of in- 
vestors: large and atomic. We analyze and compare performance 
results between both players and also with respect to results ob- 
tained in a perfect market setting. Section 4 shows how the model 
can be calibrated and applied to real financial data. Finally, some 
conclusions and potential for further research is presented. 
2. The model and its equilibrium 

Let us assume a market composed of m investors and n assets. 
The portfolio return for investor i is defined as: 
r i p := n ∑ 

j=1 x i j r j = r ′ x i (1) 
where x i 

j is the fraction allocated in asset j by investor i and r j is 
the return of the asset j . From (1) , the portfolio mean return and its 
volatility emerges easily from having each asset’s expected return, 
volatility and correlation between assets: 

µi 
p := E(r i p ) = n ∑ 

j=1 E(r j x i j ) = µ′ x i 
(σ i 

p ) 2 := V ar (r i p ) := n ∑ 
j=1 

n ∑ 
k =1 x i j x i k C jk = (x i ) ′ Cx i 

with C jk := cov( r j , r k ). 
In the classical Markowitz problem, each investor determines 

x i 
j by taking the best compromise between the variance and the 

expected return of the portfolio, considering the budget constraint 
1 ′ x i = 1 . 

Markowitz model assumes a perfect market setting. Investors 
are price takers, and therefore returns are exogenous to them. In 
these expressions, returns do not depend on investors’ allocations 
and their wealth is irrelevant when determining optimal allocation. 

Now, let us assume participants can individually affect the pre- 
vailing market price by modifying the quantity demanded of as- 
sets. Following Vath, Mnif, and Pham (2007) and Lo and Wang 
(2006) , a large investor could affect the price of the asset. The 
stock price rises when a trader buys and falls when s/he sells, and 
the impact is increasing relative to the size of the order. Specifi- 
cally, we will assume a positive relationship between the volume 
of the demand for the asset in the market and its price, i.e., a price 
mechanism of the form 
P (Q j ) := P PM 

j + θ j Q j (2) 
where P ( Q j ) is the market price of asset j , P PM 

j is the price of asset 
j in a perfect market setting, θ j ≥ 0 is an elasticity measure, or 
how the price is affected by the volume of assets demanded, and 
Q j represents the quantity of asset j demanded in the market. Thus, 
θ j Q j represents the degree of market power. 

If P 0 
j stands for the current price and w i represents the wealth 

of investor i , then Q j = ∑ m 
i =1 w i x i 

j 
P 0 

j . Hence, the price in (2) becomes 
P (Q j ) = P PM 

j + θ j ∑ m 
i =1 w i x i j 

P 0 
j 

In this context, the return of asset j is 
r j := P (Q j ) 

P 0 
j − 1 = P PM 

j 
P 0 

j + θ j 
(
P 0 

j )2 m ∑ 
i =1 

(
w i x i j ) − 1 = r PM 

j + θ ′ 
j m ∑ 

i =1 w i x i j 
where r PM 

j represents the return of the asset in a perfectly compe- 
titive market and θ ′ 

j = θ j 
(P 0 

j ) 2 . Then the expected return of asset j is 
µ j := r̄ PM 

j + θ ′ 
j m ∑ 

i =1 w i x i j (3) 
where µPM 

j is the expected return when solving the traditional 
Markowitz model. Note that r j can stand above or below r̄ PM 

j be- 
cause we allow long and short positions. From now on we denote 
r̄ PM 

j as r̄ j . 
2.1. Optimal allocations in the oligopolistic setting 

Following previous definitions, and writing D for the diago- 
nal matrix with D j j = θ ′ 

j , the investor’s mean-variance problem 
becomes 
min (x i )T 

Cx i − λi ( 
r̄ + m ∑ 

k =1 w k Dx k 
) T 

x i 
s.t 1 ′ x i = 1 
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with λ > 0 denoted the risk aversion parameter. Note that 
Markowitz is recovered when assets are not sensitive to demand 
θ j = 0 ∀ j. Denoting market power mp i := w i ∑ 

k w k , we deem an 
investor i atomic when it has insignificant market power, that 
is mp i ≈ 0 and large or powerful otherwise. We recover perfect 
market returns when we assume that all investors are atomic, 
since w i ≈ 0 in such case. 

Common wisdom holds that in a perfect market case, alloca- 
tions with a particular λ can be obtained by setting a portfolio re- 
turn target R . This target is given by the relationship λ = 2 (R − g 

h )
f− g 2 

h 
with f = r̄ ′ C −1 ̄r , g = 1 ′ C −1 ̄r , h = 1 ′ C −1 1 . Recall that solution in the 
perfect market case is given by: 
x̄ λ = λ

2 C −1 ( ̄r − g 
h 1) + 1 

h C −1 1 (4) 
We assume each investor knows the wealth of the others and 

therefore their market power pw i := w i ∑ 
k w k , just like in a typical 

Cournot-type game. In this setting, instead of having an individual 
optimization problem, we have to find the Nash equilibrium of the 
investors. 

Since the problem is convex in x i , KKT conditions are sufficient 
to find the optimal strategy. The Lagrangian L i ( x i , ρ i ) for investor i 
is 
L i (x i , ρ i ) = (x i )′ 

Cx i − λi ( 
r̄ + m ∑ 

k ̸ = i w k Dx k + w i Dx i 
) ′ 

x i + ρ i (1 ′ x i − 1 )
The KKT conditions for investor i are 

2 (C − λi w i D )x i − λi ( 
r̄ + m ∑ 

k ̸ = i w k Dx k 
) 

+ ρ i 1 = 0 (5) 
1 ′ x i = 1 (6) 

Plugging (5) in (6) and defining C i := C − λi w i D, g i := 1 ′ C i −1 ̄
r 

and h i := 1 ′ C i −1 
1 , we have 

ρ i = λi 
h i 

( 
g i + 1 ′ C i −1 m ∑ 

k ̸ = i w k Dx k 
) 

− 2 
h i (7) 

Plugging (4) , then (5) becomes 
2 C i x i − λi m ∑ 

k ̸ = i w k Dx k + λi 
h i 

m ∑ 
k ̸ = i w k (1 ′ C i −1 

Dx k )1 
= λi ̄r − λi g i 

h i 1 + 2 
h i 1 = 2 C i ̄x λi 

(8) 
Eq. (8) represents the best response equation for each in- 

vestor, i.e. the best allocation x i as a function of every other 
investor’s allocations x k . By solving the mxn system of linear equa- 
tions defined by (8) the equilibrium of the game arises. Defin- 
ing b i 

l := 1 ′ C i −1 
e l , with e l as the l th canonical vector, 1 T C i −1 

Dx k = 
1 T C i −1 (∑ 

l e l e ′ l )Dx k = ∑ 
l b i l e T l Dx k = ∑ 

l b i l θl x k l . Eq. (8) can be written 
as: 
2 n ∑ 

l C i jl x i l − λi θ j m ∑ 
k ̸ = i w k x k j + λi 

h i 
m ∑ 

k ̸ = i w k n ∑ 
l b i l θl x k l = 2[ C i ̄x λi 

] j (9) 
Rearranging terms, (9) is equivalent to 
2 n ∑ 

l C i jl x i l + m ∑ 
k ̸ = i 

[
−λi θ j w k (1 − b i j 

h i 
)]

x k j + m ∑ 
k ̸ = i 

n ∑ 
l ̸ = j 

λi 
h i θl w k b i l x k l 

= 2[ C i ̄x λi 
] j 

Hence, we can obtain the values of x = [ x 1 1 , x 1 2 , . . . , x 1 n , x 2 1 , 
x 2 2 . . . x 2 n , . . . , x m 

1 , x m 
2 . . . , x m 

n ] T by solving the linear equation Ax = c, 
with: 
A n (i −1)+ j,n (k −1)+ l 

← 
⎧ 
⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

C i 
jl k = i 

−λi 
2 θ j w k (1 − b i j 

h i 
)

k ̸ = i, l = j 
λi 
2 h i θl w k b i 

l k ̸ = i, l ̸ = j 
c n (i −1)+ j ← [ C i ̄x λi 

] j (10) 

This result represents the Nash equilibrium of the game and 
the previous equilibrium does not hold for any risk tolerance. The 
optimization problem a player solves can be unbounded for some 
λ. Since this situation does not hold in practice, we can add con- 
straints to avoid it. For example, we can add a bound on the total 
amount of an asset bought in the market or avoid shorting. For 
either possibility, we can get an equilibrium. However, these equi- 
libriums cannot be obtained in a close form as we did previously. 
In the two players-two asset example in Section 3 , we will revisit 
and explain how to proceed in such cases. 
2.1.1. Special cases 

Now we analyze allocation results for some specific cases. 
1. Investor have no risk tolerance: That is λi = 0 in which case 

x i is the minimum variance portfolio (MVP) allocation of the 
perfect market setting. 
x i = x̄ 0 = 1 

h C −1 1 
Note that in this case market power is irrelevant. 

2. Investors are identical: That is w i = w k and λi = λk in which 
case x i = x k . To see this, first note that C i = C k and hence g i = 
g k , h i = h k . Thus, Eq. (5) for investor i and k becomes: 
i : 2 C i x i − λi w i Dx k + λi 

h i w i 1 ′ C i −1 
Dx k 1 = A d 

k : 2 C i x k − λi w i Dx i + λi 
h i w i 1 ′ C i −1 

Dx i 1 = A d 
With A d the rest of the terms not depending on x i and x k . It 
emerges that the situation for i equals k and that x i = x k . 

3. All Investors are atomic: In such case we recover Markowitz al- 
locations for each investor, since no investor has the power to 
move the price of an asset. It has the same effect as the no 
price elasticity case ( θ j = 0 ∀ j) 

4. All Investors are identical: That is, everyone has the same mar- 
ket power and risk tolerance, mp i = w 1 m , λi = λ ∀ i . We know 
from previous results that allocations are equal. But in this 
case we have a close solution. From (5) and (6) and defining 
C eq := C − wλ

2 (1 + 1 
m ) D, g eq = 1 ′ C eq −1 ̄

r , h eq = 1 ′ C eq −1 
1 we get the 

solution by 
x = λ

2 C eq −1 (
r̄ − g eq 

h eq 1 ) + 1 
h eq C eq −1 

1 
Note, we recover the perfect market results when all investors 
are atomic when ( w = 0). 

5. Monopoly: If one investor has all the market power ( w . l . g . in- 
vestor M ), then its decisions will not depend on other players, 
and their allocations are determinable as in the perfect mar- 
ket case. Indeed, Eq. (7) becomes ρM = λM g M 

h M − 2 
h M and plugging 

this into (8) , we have: 
x M := λM 

2 C M −1 (
r̄ − g M 

h M 1 ) + 1 
h M C M −1 

1 
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For the rest of the players Eq. (7) becomes ρ i = λi 

h (g + 
w M 1 T C −1 Dx M ) − 2 

h and plugging this into (8) , we get: 
x i = x̄ λi + λi w M 

2 
[ 

C −1 Dx M − 1 
h (1 ′ C −1 Dx M ) C −1 1 ] 

2.2. Oligopolistic efficient frontier 
In the perfect market, the efficient frontier appears by solving 

the Markowitz problem with different values of λ. Its construc- 
tion does not depend on others investors. Once investors calibrate 
their risk tolerance, and therefore λ, they can know the portfolio 
mean return and volatility for their portfolio. The efficient frontier 
is unique for all investors. 

However, in the oligopolistic model described previously, al- 
locations and returns depend on every investor’s market power 
and risk tolerance. Each investor will have their particular effi- 
cient frontier, since mean return depends on the particular market 
power of each investor. This efficient frontier corresponds to the 
volatility and mean obtained for each different tolerance value λ
off all investors. 

With this new setting, we can compare the efficient frontier 
from two perspectives. First, from within the new oligopolistic set- 
ting, e.g., between investors with different market power. Second, 
we can compare the efficient frontier of each investor with respect 
to the perfect market case. Denoting µ̄i 

p and σ̄ i 
p as the portfolio 

mean return and volatility of player i in a perfect market setting 
then: 
µi 

p = ( ̄r + ∑ m 
k =1 w k Dx k ) ′ x i = µ̄i 

p + ∑ m 
k =1 w k (x k ) ′ Dx i (11) 

(σ i 
p ) 2 = (x i ) ′ Cx i = ( ̄σ i 

p ) 2 (12) 
For this perspective we compare the mean returns of both type 

of market under the same volatility, or equivalently under the 
same allocation. There is no other allocation that can give the same 
volatility target. To show the latter, suppose that x and y are al- 
locations in perfect and oligopolistic market, respectively. Since C 
is semi-definite positive, if both have the same portfolio volatility 
target, that is x ′ Cx = y ′ Cy, then x = y 

Hence, we can compare mean returns applying the same allo- 
cation x . To compare efficient frontiers between different market 
structures, we will compare the expected portfolio returns under 
the same allocation. 

Now we show what we know about efficient frontiers in special 
cases 
1. Investor have no risk tolerance: When λi = 0 then investor gets 

the mean and volatility from the MVP allocation, that is 
σ i 

p = σ̄MV P = 1 √ 
h 

µi 
p = µ̄MV P + 1 

h 
( 

m ∑ 
k =1 w k x k 

) ′ 
DC −1 1 

Note that µi 
p can change for other values of λk , since x k changes 

too. Also note µp between two investors ( i and k ) is equal when 
both have no risk tolerance, even if both have different market 
power. 
µi 

p = µ̄MV P + (w i + w k ) x ′ Dx + m ∑ 
k =1 ,l ̸ = i,k w l x ′ Dx l = µk 

p 
where x = x̄ 0 . 

2. Identical allocations: When two investors hold the same alloca- 
tion x , then volatility and mean are the same. This is easy to 

see from (11) and (12) . Moreover, when everyone has the same 
allocation x 
µi 

p = µ̄i 
p + x ′ Dx m ∑ 

k =1 w k ∀ i 
We have seen above that this situation develops with identical 
investors, yet it might hold in another situation as well. Hence, 
investors with less market power could eventually have com- 
mon points in the efficient frontier with investors with more 
market power. Further details and examples of this situation 
appear in the two by two setting. 

3. Monopoly: Eq. (11) for the single powerful player M becomes: 
µM 

p = µ̄M 
p + w M (x M ) ′ Dx M > µ̄M 

p (13) 
As expected, a powerful player benefits in this new structure 
when x M is the allocation in the perfect market case. The rest 
will have a return of: 
µi 

p = µ̄i 
p + w M (x i ) ′ Dx M ∀ i (14) 

Note µi 
p > µ̄i 

p when atomic investors align with first player al- 
locations, that is when allocations in each asset have the same 
direction (sign). In short, atomic players should consider to fol- 
low the herd. 

3. Equilibrium in a market with two assets and two investors 
The case of two risky assets and two investors is a handy build- 

ing block for the general case. It allows us to derive a close formula 
for optimal allocations and hence to determine under which con- 
ditions each type of investor can benefit from oligopolistic market 
structure. 
3.1. Optimal allocations 

We assume an atomic and large (powerful) player that is w A = 
0 and w M = 1 . For simplicity, we assume one asset with and an- 
other without elasticity, i.e. θ1 = 0 and θ2 = θ > 0 . Denote σ j := √ 

C j j and suppose r̄ 1 ≤ r̄ 2 and σ 1 ≤ σ 2 . Let ρ be the correlation 
between the two assets. Then C = [ σ 2 

1 ρσ1 σ2 
ρσ1 σ2 σ 2 

2 
]

. In this case A 
and c in (10) become 

A = 
⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

C 11 C 12 0 λA θ b A 2 
2 h 

C 12 C 22 0 −λA θ b A 1 
2 h 

0 0 C 11 C 12 
0 0 C 12 C 2 22 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

c = 

⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

λA 
2 

(
r̄ 1 − g 

h 
)

+ 1 
h 

λA 
2 (r̄ 2 − g 

h ) + 1 
h 

λM 
2 

(
r̄ 1 − g M 

h M 
)

+ 1 
h M 

λM 
2 

(
r̄ 2 − g M 

h M 
)

+ 1 
h M 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

Since x i 1 = 1 − x i 2 then equations two and four are linearly de- 
pendent of one and three. Taking one and three, the system 
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reduces to solve ˜ A x = ̃  c with x = [ x A 2 , x M 

2 ] ′ and: 
˜ A = 

⎡ 
⎣ C 12 − C 11 λA θ b A 2 

2 h 
0 C 12 − C 11 

⎤ 
⎦ , ˜ c = 

⎡ 
⎢ ⎢ ⎣ 

λA 
2 ( ̄r 1 − g 

h ) + 1 
h − C 11 

λM 
2 

(
r̄ 1 − g M 

h M 
)

+ 1 
h M − C 11 

⎤ 
⎥ ⎥ ⎦ 

Easily observable is that b M 
2 = −C 12 −C 11 

| C| and ˜ c = (C 12 −
C 11 ) [ 

λA 
2 ¯r 2 − ¯r 1 

| C| h − C 12 −C 11 
| C| h 

λM 
2 ¯r 2 − ¯r 1 

| C| h −λM θ − C 12 −C 11 
| C| h −λM θ

] 
. Then the solution is given by: 

x M 
2 = λM 

2 r̄ 2 − r̄ 1 
| C| h − λM θ + C 11 − C 12 

| C| h − λM θ = x̄ λM 
2 

(
| C| h 

| C| h − λM θ
)

(15) 
x A 2 = λA 

2 r̄ 2 − r̄ 1 
| C| h + C 11 − C 12 

| C| h + λA θ
2 | C| h x M 

2 = x̄ λA 
2 + λA θ

2 | C| h x M 
2 (16) 

Henceforth, x A 2 and x M 
2 are denoted as x M and x A , respectively. 

Likewise, x̄ λi 
2 is denoted as x̄ i 

3.2. Powerful player 
As laid out in Section 1 , this equilibrium does not hold for any 

λ. To clarify, let us see when the problem is unbounded for the 
powerful player. The large player solves 
min (| C| h − λM θ ) x M −(λM ( ̄r 2 − r̄ 1 ) + 2(C 11 − C 12 )) x M − λM r̄ 1 + C 11 

When | C| h − λM θ < 0 , the problem is unbounded, i.e. a pow- 
erful player can arbitrarily increase the objective function by in- 
creasing allocation in asset two. Obviously this does not happen in 
practice, since even large players have only limited amounts to in- 
vest, even if they short in other assets. To simplify analysis, we as- 
sume no shorting, that is 0 ≤ x M ≤ 1. By adding this constraint, we 
are implicitly bounding the amount bought and asset’s two return: 
r̄ 2 + θx M ≤ r̄ 2 + θ . Now θ represents how much powerful player is 
able to shift the return. 

So when | C| h − λM θ < 0 then x M = 1 . If | C| h − λM θ ≥ 0 , then it 
depends on market conditions and player risk tolerance. 
• If 0 ≤ λM 

2 ≤ C 12 −C 11 
r̄ 2 −r̄ 1 then x M = 0 

• If C 12 −C 11 
r̄ 2 −r̄ 1 ≤ λM 

2 ≤ C 22 −C 12 
r̄ 2 −r̄ 1 +2 θ then x M = x̄ M ( | C| h 

| C| h −λM θ ) 
• If λM 

2 > C 22 −C 12 
r̄ 2 −r̄ 1 +2 θ then x M = 1 

Allocation of large investor does not depend on atomic deci- 
sions. We also observe that x M ≥ x̄ M and hence x M is increasing 
in risk tolerance λM too. It easily appears that the objective func- 
tion z M 

p := (σ M 
p ) 2 − λM µM 

p is better as we increase risk tolerance. 
Indeed: 
∂z M 

p 
∂λM = −2 θx M ∂x M 

∂λM λM − µM 
p ≤ 0 

The reward for more risk is higher than in the perfect mar- 
ket case, where ∂z p 

∂λM = −µM 
p . The following shows how a powerful 

player benefits in this new setting. 
Proposition 1. For any risk tolerance λM , a powerful player gets a 
better (at least equal) value of z M 

p in relation to a perfect market set- 
ting. If x M + x̄ M ≤ 1 , the benefit increases as we decrease asset’s cor- 
relation and decreases otherwise. 
Proof. First, let us calculate the difference in volatility and return 
in both markets: 
µM 

p [ x M ] − µ̄M 
p [ ̄x M ] 

= (1 − x M ) ̄r 1 + x M ( ̄r 2 + θx M ) − ((1 − x̄ M ) ̄r 1 + x̄ M r̄ 2 ) 
= ( ̄r 2 − r̄ 1 )(x M − x̄ M ) + θ (x M ) 2 

(σ M 
p [ x M ]) 2 − ( ̄σ M 

p [ ̄x M ]) 2 
= | C| hx 2 M − 2(C 11 − C 12 ) x M + C 11 

− (| C| h ̄x 2 M − 2(C 11 − C 12 ) ̄x M + C 11 ) 
= (x M − x̄ M )(| C| h (x M + x̄ M ) − 2(C 11 − C 12 )) 
= (x M − x̄ M )(| C| h (x M − x̄ M ) + λM ( ̄r 2 − r̄ 1 )) 

Then the difference in z M 
p between both markets is: 

z M 
p [ x M ] − z̄ M 

p [ ̄x M ] = (σ M 
p [ x M ]) 2 − ( ̄σ M 

p [ ̄x M ]) 2 − λ(µM 
p [ x M ] − µ̄M 

p [ ̄x M ]) 
= | C| h (x M − x̄ M ) 2 − λM θx 2 M (17) 

• If | C| h − λM θ < 0 then the difference is | C| h (1 − x̄ M ) 2 − λM θ ≤
| C| h − λM θ

• If | C| h − λM θ > 0 , when x M = 0 is easy to see that x̄ M = 0 too. 
Therefore the difference is zero. When x̄ M = 1 , then x M = 1 
and therefore the difference is zero too. Finally when x M = 
x̄ M ( | C| h 

| C| h −λM θ ) then the difference equals − x̄ 2 M θλM | C| h 
| C| h −λM θ ≤ 0 

If we differentiate the previous term with respect to ρ we get: 
2 ̄x M σ1 σ2 λM θ
(| C| h − λM θ ) { 1 − x̄ M − x M } 
Hence, when λM is small enough so that x M + x̄ M ≤ 1 , perfor- 
mance difference decreases as we increase correlation, and rises 
otherwise. !

If we want to compare an efficient frontier of both settings, 
we already know from (13) that for the same volatility and hence 
same allocation ( x 2 ), mean portfolio return is higher in the new 
market. In fact (13) becomes µM 

p = µ̄M 
p + θx 2 2 . Thus, the difference 

is bigger when we increase the volatility target. 
To add some numerical example to the latter re- 

sults, we construct the following setting: ( ̄r 1 , σ1 ) = 
(5 percent , 15 percent ) , ( ̄r 2 , σ2 ) = (10 percent , 30 percent ) , θ = 
5 percent . Fig. 1 shows Proposition 1 results. Note that differences 
between both markets increases with higher risk tolerance and 
lower correlation. 

Sensitivity analysis in θ is straightforward. As it increases, dif- 
ference in results accentuates: allocation difference of asset two is 
larger, as well as the risk-return compromise. Analogously, differ- 
ences disappear as θ approaches zero. 
3.3. Atomic player 

For atomic investors, allocation depends on powerful investors. 
Asset two’s allocation still increases in λ and x A ≥ x̄ A . To see the 
difference in performance with respect to the perfect market case, 
Eq. (17) for an atomic player becomes 
| C| h (x A − x̄ A ) 2 − λ1 θx A x M 

= | C | h ( λA θ
2 | C | h x M )2 

− λ1 θx A x M 
= x M λA θ

(| C| h ) 
{

λA θx M 
4 − λA 

2 ( ̄r 2 − r̄ 1 + θx M ) + C 12 − C 11 }

= x M λA θ
(| C| h ) 

{
−λA 

2 
(

r̄ 2 − r̄ 1 + θ
2 x M ) + C 12 − C 11 } (18) 

So if x M = 0 , z A p is the same as in perfect market setting. If not, 
then an improvement exists only when λA 

2 > C 12 −C 11 
r̄ 2 −r̄ 1 + θ2 x M . The last 

condition always holds if C 12 − C 11 < 0 , that is when ρ < σ1 
σ2 . 

If we want to compare an efficient frontier of both settings, we 
already know from (14) that for the same volatility, mean portfo- 
lio return is higher in the new market, as long as allocation of the 
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Fig. 1. Risk-return compromise of powerful player in perfect market (PM) and oligopolistic market (OM). Figure at the top (bottom) is set with ρ = −. 8 ( ρ = . 8) . For both 
situations, λM 

2 ∈ [ max { 0 , C 12 −C 11 
r̄ 2 −r̄ 1 } , C 22 −C 12 

r̄ 2 −r̄ 1 +2 θ ] . 
atomic player is positive. In fact, for atomic allocation x 2 in asset 
two, (14) turns into µA 

p = µ̄A 
p + θx 2 x M . Its difference is bigger when 

we increase each player’s volatility target. Note that when ρ < σ1 
σ2 , 

allocation in assets two is always positive, so in this case the dif- 
ference is positive. When not, this happens if λA 

2 > C 12 −C 11 
r̄ 2 −r̄ 1 . 

Fig. 2 shows the ultimate results with the same numerical ex- 
ample as in the powerful player example. For ρ = −. 8 we are cer- 
tain the atomic player will improve z A p and the volatility–mean re- 
lationship. With ρ = . 8 , we have better z A p when λA 

2 > C 12 −C 11 
r̄ 2 −r̄ 1 + θ2 x M = 

. 24 and better volatility-mean relationship when λA 
2 > C 12 −C 11 

r̄ 2 −r̄ 1 = 
. 14 . If we increase x M this threshold also increases. That is, when 
the powerful player tolerates more risk, the atomic player does 
likewise to finish better off than in a perfect market case. 
3.4. Powerful player vs. atomic player 

Previously, we compared each player’s performance with re- 
spect to the perfect market case. Now we compare the perfor- 
mance of both players within the new market setting. To begin, 
we work out the difference between z M 

p and z A p : 
z M 

p [ x M ] − z A p [ x A ] = (σ M 
p [ x M ]) 2 − (σ A 

p [ x A ]) 2 
− (λM µM 

p [ x M ] − λA µA 
p [ x A ]) 

= (x M − x A )(| C| h (x M + x A ) − 2(C 11 − C 12 )) 
− ((λM − λM ) ̄r 1 + ( ̄r 2 − r̄ 1 )(λM x M − λA x A ) 
+ θ (λM x 2 M − λA x 2 A )) (19) 

Fig. 3 shows the numerical example results for Eq. (19) for different 
equilibriums. As expected, the atomic player can only get better z p 
than the powerful player when the latter is more risk averse and 
the former increases risk tolerance. In that case the atomic player 
can get a greater benefit with the increase in asset two’s return 

Apparently, no close exists for the relationship between λM 
and λA that could determine the sign of Eq. (19) . However, in 
some cases we can determine when the atomic player may eventu- 
ally perform better than the powerful player. Note, when x M = x A , 
(19) equals −(λ2 − λ1 ) µp [ x A ] . So in these cases it suffices to have 
λ1 > λ2 . Recalling from previous results: 
• In R 1 := { λM 

2 > min { | C| h 
2 θ , C 22 −C 12 

r̄ 2 −r̄ 1 +2 θ } , λA 
2 > C 22 −C 12 

r̄ 2 −r̄ 1 + θ } then x M = 
x A = 1 

• If ρ > σ1 
σ2 , R 2 := { λM 

2 < C 12 −C 11 
r̄ 2 −r̄ 1 , λA 

2 < C 12 −C 11 
r̄ 2 −r̄ 1 } then x M = x A = 0 . 

In other cases, we have x M = x A when x̄ M ( | C| h 
| C| h −λM θ ) = x̄ A + 

λA θ
2 | C| h x M . It is not hard to see that this equation turns into: 
R 3 : θ ( ̄r 2 − r̄ 1 ) λA 

2 λM 
2 − [ | C| h ( ̄r 2 − r̄ 1 ) + θ (C 11 − C 12 )] λA 

2 
+ [ | C| h ( ̄r 2 − r̄ 1 ) + 2 θ (C 11 − C 12 )] λM 

2 = 0 
So in region R A = R 1 ∪ R 2 ∪ R 3 ∪ { λA > λM } the atomic player 

can certainly achieve a better risk-return compromise than 
the powerful player. Analogously R M = R 1 ∪ R 2 ∪ R 3 ∪ { λA < λM } is 
where the large investor receives a higher benefit. 
3.5. No adaptation cost 

We would like to quantify the cost for an atomic player when 
it is assumed that all players are atomic but in fact are not. Specif- 
ically, we want to compare z A p when allocating as in the perfect 
market case, instead of allocating as Eq. (16) . The cost is the fol- 
lowing: 
c A := z A p [ ̄x A ] − z A p [ x A ] 

= (σ A 
p [ ̄x A ]) 2 − (σ A 

p [ x A ]) 2 − λA (µA 
p ([ ̄x A ]) − µA 

p [ x A ]) 
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Fig. 4. Atomic player cost when not considering the effect of a powerful investor on assets two’s return. 
= ( ̄x A − x A )(| C| h (x A − x̄ A ) − λA θx M ) 
= λA θx M 

2 | C| h 
(

λA θx M 
2 − λA θx M ) = (λA θx M ) 2 

4 | C| h 
This represents the cost for an atomic player to allocate with 

perfect market information each time a powerful investor decides 
to invest and affect asset two’s return. Note, the cost is an even 
function in terms of x M . This means that the cost remains the same 
no matter if powerful investment is buying or selling asset two. 

As expected, the cost increases when more risk is taken by ei- 
ther player and also when elasticity is higher. To know whether 
less correlation decreases the cost, it is easy to see that 
∂c A 
∂ρ

= (λA θ ) 2 x M σ1 σ2 
2 | C | h (C h − λM θ ) 2 [ −1 + x̄ A + 2 x A ] 

The previous term is certainly positive with x̄ A ≥ 1 
3 , that is less 

correlation decreases cost. Fig. 4 shows this cost for the numeric 
example and also shows how the cost increases with higher corre- 
lation and allocation of the powerful investor in asset two. 
4. Application with OTC data 

In this section, we first present empirical evidence of how the 
amount traded is correlated with price variations (returns). Then 
we show a way to estimate the effect a powerful player has on 
assets. 

We select historical data from six known ETF, each from a dif- 
ferent asset class. For each asset, we classify data in two groups, 
according to the volume traded V on that day. If V is below the 
first quartile, data goes into the first group ( G 1) and if it is above 
the third quartile into the second ( G 2). Table 1 and Fig. 5 shows 
the clear difference between the return’s distribution of the two 
groups. Except for money market ETF (BIL), its clear that returns 
from group two have thicker tails and higher volatility. BIL is also 
affected, but in the other direction. Therefore, variations in days 

Table 1 
Mean and test results of daily returns, classified according to volume traded. Data 
daily taken from Google finance database from July 2006 until Oct 2015. V i stands 
for the i th percentile of shares traded in millions. σ Gi is the standard deviation of 
returns in group i (basis points). Pk Gi is the k th percentile of returns in group i 
(basis points). 

SPY EFA EMM TLT GSC BIL 
V 25 47 8 30 2 0.1 0.08 
V 75 161 20 69 7 0.3 0.5 
σ G 1 136 127 165 70 110 5 
σ G 2 183 262 309 118 199 4 
P 5 G 1 −200 −209 −231 −123 −164 −6.5 
P 5 G 2 −300 −417 −451 −197 −341 −4 
P 95 G 1 181 216 241 116 191 6.5 
P 95 G 2 288 385 523 168 303 2 

with more transactions are different (higher except for BIL) than 
days with less transactions. 

With this data, we can estimate the mean return from Eq. (3) . 
We can argue that on days belonging to group two, allocations of 
players are moving prices beyond the prices without their partici- 
pation. For the two players case, we can aggregate these allocations 
and think it as an allocation of a single powerful player. 

If we assume that investors are price takers, it is common to 
estimate the mean return of an asset with the sample mean r̄ . In 
our model, we have to classify returns on whether powerful play- 
ers allocate or not. If we assume that returns belonging to G 2 are 
the returns when this happens, then we can estimate the effect of 
these investors on asset’s returns. 

First we classify returns of G 2 in two groups: G 2 + is the group 
for positive and G 2 − with negative price variations. We also denote 
G 2 C as the returns not belonging to G 2. Then, the term θ ′ 

j ∑ m 
i =1 w i x i 

j 
in Eq. (3) can be estimated with r̄ + G 2 – r̄ C G 2 when powerful investors 
buy and with r̄ −G 2 – r̄ C G 2 when they sell. Table 2 shows the estimation 
for all ETF. 
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Table 2 
Powerful players’ influence in ETF daily returns (basis points). For BIL, the difference 
sign is changed, since price variation is inversely related with traded volume. 

SPY EFA EMM TLT GSC BIL 
r̄ C G 2 5.4 5.1 1.8 4.5 0.9 0.1 
r̄ + G 2 130 179.3 242.1 91.9 142 3.4 
r̄ −G 2 −133.2 188 −210.7 −102.1 −155.1 −3.6 
r̄ + G 2 – r̄ C G 2 124.6 174.2 240.3 87.4 141.1 −3.4 
r̄ −G 2 – r̄ C G 2 −138.6 −193 −212.6 −106.6 −156 3.6 

For the two player-two asset example, the difference is equal to 
θx M . To illustrate how this affects atomic player decisions, Fig. 6 
shows the analogous result shown in Fig. 2 for an atomic player 
with respect to the perfect market case. But now we use the BIL- 
SPY and BIL-TLT pairs. To compute the annualized mean return µ
of Eq. (3) from daily estimations, we simply annualized the value 
of r̄ C G 2 + r̄ + G 2 − r̄ C G 2 (multiply by 250). However, the last term has 
to be multiply by the probability that powerful investors decide to 
buy. That last probability can be estimated by counting the amount 
of data belonging to r̄ + G 2 from all the data. Analogously, we can es- 
timate µ when large investors decide to sell. Table 3 shows the 
latter estimations and the rest of input needed to construct the 
ETF pairs example. 
5. Conclusions and further work 

We have successfully addressed strategic behavior of large and 
atomic players in the context of portfolio management. Our model 
permits to find the optimal portfolio for each investor, some of 
them capable of moving asset prices when trading. In this frame- 
work, we also explained that the efficient frontier is different for 
each player and depends on size and degree of risk tolerance of 

Table 3 
Annualized mean returns, volatility and correlation with BIL. When large investors 
buy, µ = ̄r C G 2 + p( G 2 + )( ̄r + G 2 − r̄ C G 2 ) . Analogously when large investors sell µ = ̄r C G 2 + 
p( G 2 −)( ̄r −G 2 − r̄ C G 2 ) . With x M = 1 , θ is estimated by µ − r̄ C G 2 . Returns are not in basis 
points and the model is not applied to BIL. 

SPY EFA EEM TLT GSC BIL 
ρ −.16 −.16 −.16 .07 −.08 1 
σ (percent) 22 27 35 16 25 0.8 
r̄ (= ̄r C G 2 ) (percent) 13 13 5 11 2 .1 
p( G 2 + ) (percent) 11.9 11.6 11.5 12.6 11.7 –

µ (percent) 51 63 74 39 43 .1 
θ (x M = 1) (percent) 38 50 69 28 41 0 
p( G 2 −) (percent) 13 13.2 13.3 12.3 13.1 –

µ (percent) −31 −51 −66 −21 −49 .1 
θ (x M = 1) (percent) −44 −64 −71 −33 −51 0 

the remaining investors. We show how to compare this efficient 
frontier with the perfect market frontier. 

The two investor-two asset example allows to quantify and an- 
alyze how both investors are affected in this new market setting. 
We compare results with respect to standard settings and also be- 
tween both players. As expected, the large investor always bene- 
fits (at least achieves equal results) in terms of risk-return perfor- 
mance. Atomic player can also benefit if it emulates the strategic 
behavior of the large investor. This expected pattern of results ob- 
tained in risk-return performance helps to validate the model con- 
structed. The example also allows to do sensitivity analysis with 
respect to risk tolerance and price elasticity of volume traded. 

We have empirically shown how price variations changed de- 
pending on volume traded, which also validates the claim that 
large investors can eventually affect the price of an asset. Finally, 
we have implemented the model with real market data, by esti- 
mating the influence of large investors on prices. 
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Fig. 6. Risk-return compromise of an atomic player in perfect market (PM) and oligopolistic market (OM) for two pairs: BIL-SPY and BIL-TLT. θ used is the one shown in 
Table 3 when large investors go long in asset two. Other pairs, such as BIL-EFA, BIL-EMM and BIL-GSC are omitted because they follow the same pattern as shown pairs. 

In this paper we have combined mean-variance portfolio op- 
timization and game theory to determine investors’ allocation in 
oligopolistic markets, opening an interesting new line of research. 
One natural extension of this work is to add studied changes made 
to Markowitz model into our model. Another interesting extension 
is to analyze investors’ behavior when the game is played in time. 
The model can be also used to measure the impact of collusion 
between large investors or to understand herd behavior of atomic 
players. 
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